

Vysoké učení technické v Brně Antonínská 458/1, 60190 Brno; Czech Republic VAT CZ00261305 Fakulta elektrotechniky a komunikačních technologií Ústav elektroenergetiky Technická 3058/10, 616 00 Brno; Czech Republic Tel.: +42054114 6220, e-mail: fekt-ueen@vut.cz, http://www.ueen.fekt.vut.cz

SW pro TestBench manuál v1.0

Název výsledku

SW pro ovládání provozu simulátorů komplexních energetických systémů v laboratorních podmínkách

Projekt

Výzkum a vývoj pokročilého energetického managementu HW a SW na bázi umělé inteligence pro lepší penetraci OZE v rámci dynamických cen elektřiny (project č. CZ.01.1.02/0.0/0.0/21_374/0027235)

Version: v1.0 (31.3.2023),

Elaborated by: Klusáček, Michal Vrána, Martin Vojtek, Michal Ptáček, Petr Baxant, Martin Paar, Filip Koval, Branislav Bátora Vysoké učení technické v Brně Fakulta elektrotechniky a komunikačních technologií Ústav elektroenergetiky Technická 3082/12 616 00 Brno, Czech Republic tel. +420 739 824 950 email: <u>klusacekj@vut.cz</u>

Content

1	Obecný popis SW	3
2	Ovládání SW	1
2.1	Záložka "Settings"	4
	2.1.1 DC simulátor PV pole: Chroma 62150H-1000S	5
	2.1.2 Simulátor AC zátěže: Chroma 63804	5
	2.1.3 Simulátor AC sítě Regatron TA.ACS 50	5
	2.1.4 Analyzátor sítě HIOKI 3390	5
2.2	Záložka "Control"	3
2.3	Záložka "Measurement"	5
3	Příklad testování zařízení	3

1 Obecný popis SW

Software obsluhuje testovací pracoviště na Obr. 1. Pracoviště se skládá ze simulátoru AC distribuční sítě, simulátoru AC zátěže, DC zdroje pro simulování PV panelů, a síťového analyzátoru. Pracoviště je určeno pro analýzu a testování energetických systémů s více energetickými vstupy a výstupy (terminály). Software umožňuje zaznamenat časový průběh energetických toků v testovaném systému, ověřit jeho nastavení a díky použití síťového analyzátoru zaznamenat kvalitu elektrické energie na všech terminálech.

Obr. 1. Testovací pracoviště

2 Ovládání SW

Program se spustí tlačítkem pro spouštění algoritmů v okně ovládacího panelu LabView v levém horním rohu obrazovky. Program je možné kdykoliv ukončit tlačítkem "End", které řádně ukončí všechny procesy. Nedoporučuje se program uzavírat pomocí tlačítka 🔍 v panelu LabView, nebo zavřením okna.

~	\$ & ● II	18pt Application Font	• 5	-	• 1 •••	₩.	\$?-	P) End
7)								D)

Obr. 2. Ovládání programu: 1) tlačítko pro spuštění (A) a 2) tlačítko pro ukončení (B).

2.1 Záložka "Settings"

Po spuštění programu je nutné uživatelsky vybrat a parametrizovat způsob testování a konfigurovat ovládaná zařízení v záložce "Settings" (Obr. 3). Ovládat jednotlivá zařízení testovacího pracoviště lze buďto manuálně, nebo automaticky (2). Automatické ovládání funguje na bázi sekvence kroků definované v souboru .txt, kde každý řádek představuje jeden krok a jednotlivé hodnoty jsou odděleny tabulátorem. Cesta k souboru se definuje pomocí (3) a nastavení doby trvání jednoho kroku sekvence (4). Příklad sekvence kroků .txt je na Obr. 4. V obou případech je možné spustit záznam měřených hodnot (5), který se po vykonání měření automaticky uloží ve složce programu ve formátu .csv. V dalších kapitolách je detailně popsáno počáteční nastavení zařízení pracoviště. Po řádném nastavení je nutné volby potvrdit tlačítkem "Meas&Ctrl" (9). Tím se spustí relace ovládání a měření.

Obr. 3. Panel nastavení v SW

Pmpp_DC	Vmpp_DC	P_load	PF_load	R_load	I_load	V_grid	f_grid
W	V	W		Ohm	A	V	Hz
5000	550	0	1	110	6	230	50
5000	550	0	1	110	6	230	50
5000	550	0	1	110	6	230	50
5000	550	0	1	110	6	230	50
5000	550	500	1	110	6	230	50
5000	550	1000	1	110	6	230	50
1500	550	1000	1	110	6	230	50
5000	550	1000	1	110	6	230	50
5000	550	500	1	110	6	230	50
5000	550	0	1	110	6	230	50
5000	550	0	1	110	6	230	50

Obr. 4. Příklad sekvence nastavení parametrů testovacího pracoviště v souboru .txt.

2.1.1 DC simulator PV pole: Chroma 62150H-1000S

V sekci nastavení (6) lze nastavit ochranné limity proudu a napětí pro simulátor PV pole: maximální proud (OCP_DC) a maximální napětí (OVP_DC. Pro komunikaci se DC simulátorem je třeba nastavit stejnou GPIB adresu v SW i v zařízení (defaultní adresa pro simulátor Chroma 62150H-1000S je GPIB 1).

2.1.2 Simulátor AC zátěže: Chroma 63804

V sekci nastavení (7) lze nastavit ochranný limit proudu pro simulátor zátěže: maximální amplituda proudu (I_max_peak_AC). Při volbě automatický režim (2) je dále v (7) potřeba zvolit typ zátěže: 1) RLC zátěž definovaná pomocí konstantního výkonu a účiníku (RLCP nebo CP), 2) zátěž typu konstantní odpor (CR) a zátěž typu konstantní proud (CC). Na základě této volby bude SW načítat relevantní sloupce ze souboru .txt (Obr. 4). Pro komunikaci se simulátorem zátěže je třeba nastavit stejnou GPIB adresu v SW i v zařízení (defaultní adresa pro simulátor Chroma 63804 je GPIB 8).

2.1.3 Simulator AC sítě Regatron TA.ACS 50

V sekci nastavení simulátoru sítě (8) je možné nastavit rozmezí vstupních hodnot: efektivní hodnota fázového napětí (V_ph_min a V_ph_max) a frekvence (freq_min, freq_max). Simulátor sítě Regatron TA.ACS.50 komunikuje pomocí protokolu TCP/IP a adresu se nastavuje ručně.

2.1.4 Analyzátor sítě HIOKI 3390

Sekce (10)-(14) jsou nastavením analyzátoru sítě, který měří a zaznamenává zvolené veličny. Detailní popis nastavení je v Tab. 1.

Sekce nastavení	Popis nastavení								
(10)	Nastavení TCP/IP adresy zařízení								
(11)	Agregační interval měření a záznamu (rozlišení záznamu v čase)								
(12)	Měřící mód ana 3P3W2M (3P3V	alyzátoru (1P2W V3M)– tři fáze 3	′ – jedna fáze 2 v vodiče, 3P4W – ti	rodiče; 1P3W – je ři fáze 4 vodiče) [1	edna fáze 3 vodiče;]				
		CH1	CH2	CH3	CH4				
	Mode 1	1P2W	1P2W	1P2W	1P2W				
	Mode 2	1F	23W	1P2W	1P2W				
	Mode 3	3P3	SW2M	1P2W	1P2W				
	Mode 4	1F	P3W	1P3W					
	Mode 5	3P3	SW2M	1P3W					
	Mode 6	3P3	SW2M	3P3W2M					
	Mode 7		1P2W						
	Mode 8		1P2W						
(13)	Nastavení měřicího rozsahu proudu a napětí jednotlivých kanálů (I Range, V Range) a nastavení převodního koeficientu v případě použití externího proudového bočníku nebo napěťového transformátoru.								
(14)	Nastavení veličin pro záznam.								

Tab. 1. Nastavení analyzátoru sí

2.2 Záložka "Control"

Záložka "Control" je aktivní pouze při manuálním ovládání (MAN v (2) na Obr. 3) a umožňuje ovládat všechna zařízení v reálném čase (Obr. 5).

DC simulátor PV pole Chroma 62150H-1000S simuluje PV křivku dle EN 50530, která je parametrizována napětím v bodě maximálního výkonu (Vdc_MPP ve V) a maximálním výkonem (Pdc_MPP ve W).

Simulátor zátěže Chroma 63804 lze nastavit jako 1) RLC zátěž definovaná pomocí konstantního výkonu a účiníku (RLCP nebo CP), 2) zátěž typu konstantní odpor (CR) a zátěž typu konstantní proud (CC). Velikost zátěže se ovládá přímo vepsáním požadované hodnoty do příslušného boxu.

V relaci měření není možné měnit počáteční nastavení (záložka Settings je nepřístupná). Pro změnu počátečního nastavení je nutné kliknout na tlačítko "Stop".

End Init Settings LOO Settings Control Measurement	trol Meas P LOOP	REC ON	
Chroma 62150H-1000S		Chroma 63804	Stop
DC source		AC load	Stop
Settings (EN50530 mode)		Mode	Návrat na
Vdc_MPP Pdc_MPP		CR CP CP	záložku Settings
AC grid simulator		RLCP CC	
Settings V_phA V_phB V_phC \$\$\overline\$230 \$		Settings P_load PF_load 1000 1000 R_load 1000 100 1000	
Regatron TA.ACS 50			

Obr. 5. Ovládací panel připojených zařízení pro manuální ovládání.

2.3 Záložka "Measurement"

Záložka "Measurement" je stále aktivní, nezávisle na počátečním nastavení a slouží k on-line náhledu vybraných veličin (Obr. 6). Délku obnovovacího okna lze měnit počtem vzorků v grafu (délka jednoho závisí na nastavení (11) v Obr. 3).

Obr. 6. Náhled měřených hodnot analyzátorem HIOKI

3 Příklad testování zařízení

Na testovacím pracovišti bylo testováno řízení energetického managementu vyvinutého společností Wattstor. Jednotka řídí energetické toky v eneretickém systému sestávající se z 1) bateriového úložiště s invertorem/nabíječkou, 2) PV výrobnou připojenou na AC sběrnici systému a 3) elektroměrem na AC vstupu systému. Systém byl zapojen do testovacího pracoviště dle schématu na Obr. 7.

Obr. 7. Schéma testovacího pracoviště a testovaného systému.

Testovací sekvence je definována stavy testovacího pracoviště, které jsou specifikovány v .txt. souboru. Tím je testovaný energetický systém vystaven změnám okolních podmínek, v tomto případě změně výkonu AC zátěže a změně dostupného výkonu PV pole (Obr. 8). Cílem testu bylo ověření 1) především stability systému (systém se musí po odeznění přechodného děje ustálit v novém stavu), 2) délky regulace (je žádoucí, aby dynamický děj trval co nejkratší dobu, řádově srovnatelnou s měřicím oknem standardních fakturačních elektroměrů ~1 s, dle [2] by mělo být 90 % regulační odchylky vyregulováno do 5 s) a dodatečně 3) průběhu regulace (přechodný děj by neměl být dle doprovázen náhlými změnami trendu, např. tlumenými oscilacemi; ideálně by jeho průběh měl konvergovat do průběhu odezvy systému prvního řádu).

Na Obr. 8 je zobrazen příklad výstupu testování. Jednotlivé průběhy A) - D) odpovídají místům měření v Obr. 7: Obr. 8A) odpovídá CH1; Obr. 8B) odpovídá CH2; Obr. 8C) odpovídá CH3 a Obr. 8D) odpovídá CH4. Z výsledku měření lze vidět, že testovaná jednotka řízení energetického systému řídila výkon PV výrobny tak, aby byl dosažen nulový přetok na rozhraní testovaného systému a distribuční sítě (nulová energie v exportním registru fakturačního elektroměru). Zároveň lze vidět, že v rámci energetického managementu nepovolila nabíjení/vybíjení baterie.

Po každé změně nastavení testovacího pracoviště se testovaný systém vždy ustálí v novém stavu, tzn. z hlediska stability ho lze považovat jako vyhovující. Délka regulace byla naměřena v řádu násobků desítek sekund, a lze tak očekávat nenulovou energii registrovanou v exportním registru fakturačního elektroměru. Systém lze doporučit např. pro dlouhodobé minitorování v konkrétní aplikaci s vyhodnocením závažnosti při reálném provozu. Z hlediska průběhu regulace lze z Obr. 8A) konstatovat, že trend průběhu výkonu odpovídá odezvě obecného systému 1. řádu a sytém lze považovat za vyhovující i přes schodovitý průběh v rámci trendu.

Obr. 8. Testovací sekvence a průběh výkonu v jednotlivých místech energetického systému.

Zdroje:

- [1] Hioki E.E. Corporation, HIOKI 3390-10 Power Analyzer, Instruction Manual, High Accuracy version, May 2013, Revised edition 2, Japan
- [2] Provozovatelé distribučních soustav, Pravidla provozování distribučních soustav, příloha 4: Pravidla pro paralelní provoz výroben a akumulačních zařízení se sítí provozovatele distribuční soustavy, 2020
- [3] ČSN EN 50549-1, Požadavky na paralelně připojené výrobny s distribučními sítěmi Část 1: Připojení k distribuční síti nn Výrobny do typu B včetně, 08/2019

Autoři software s názvem "SW pro ovládání provozu simulátorů komplexních energetických systémů v laboratorních podmínkách" děkují za finanční podporu MPO ČR v rámci Programu OP PIK (project č. CZ.01.1.02/0.0/0.0/21_374/0027235 Výzkum a vývoj pokročilého energetického managementu HW a SW na bázi umělé inteligence pro lepší penetraci OZE v rámci dynamických cen elektřiny).

EVROPSKÁ UNIE Evropský fond pro regionální rozvoj Operační program Podnikání a inovace pro konkurenceschopnost